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1 Introduction
Clear definition
of distrubtion vs
density needed

Better motivation
needed

We seek to perform density estimation between a true (but unknown) probability distribution, and
a set of proposal distributions. Formulated as minimization between distributions, this leads to the
maximum (marginal) likelihood principle (see Section 2). To extend the expressiveness of our proposal
distributions, we introduce latent variable models (see Section 3). The hidden variables raise issues in
evaluating the marginal likelihood. We replace the marginal likelihood by a surrogate objective devel-
oped by Variational Inference (see Section 4). Combining these ideas gives us a powerful framework
to estimate marginal, inference and joint distributions simultaneously. The Variational Autoencoder
(see Section 5) is a specific application of these framework, that parametrizes the distributions to be
optimized by neural networks.

The Appendix of this document contains additional material to Monte Carlo approximations, opti-
mization of expectations and details of the Kullback-Leibler divergence. This document is accompa-
nied by several Python notebooks, demonstrating derived results numerically.

Remark This document started out as a concise summary of Variational Autoencoders (VAE) [1, 2].
Over time, more and more topics were added, that shed light on the derivation from a broader
perspective. Eventually, its content will be turned into a chapter of my thesis. This work is inspired
by the contributions and books I found during my research [3, 4, 5, 6].
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2 Density Estimation

Consider the task of estimating a density function from observed data. The true underlying density
p?(x) is unknown. Instead, we are given a set of iid observations {xi}i≤N ∼ p?(x) having empirical
density p′(x) [7]. Let Px denote a set of proposal densities p(x). Density estimation attempts to find
the element p(x) ∈ Px which minimizes a cost function C(p′(x), p(x)). Consider the Kullback-Leibler
divergence (see Appendix B) as objective. Then,

p̂(x) = arg min
p(x)∈Px

DKL(p′(x) || p(x)) (1)

= arg min
p(x)∈Px

Ex∼p′(x)
[
log

p′(x)

p(x)

]
(2)

= arg min
p(x)∈Px

[
Ex∼p′(x) log p′(x)− Ex∼p′(x) log p(x)

]
(3)

= arg min
p(x)∈Px

−Ex∼p′(x) log p(x) (4)

= arg max
p(x)∈Px

Ex∼p′(x) log p(x). (5)

From the last equation it can be seen that the objective of density estimation using KL-divergence cor-
responds to maximum (marginal) likelihood estimation under the empirical distribution—a common
objective in unsupervised machine learning.

Remark This sheds light on the inner workings of maximum likelihood. As shown in Appendix B, the
specific order of arguments in the KL-divergence in the equations above leads a solution that spreads
out over regions where p′(x) > 0 (i.e at samples) and is arbitrarily defined in between. Considering
a proposal family Px that contains infinitely complex densities and a small sample set, the resulting
p̂(x) therefore tends to overfit. Thus, we need complexity regularization for Px when doing maximum
likelihood. One obious way: limit Px to densities of simpler shape.

In the following, we assume Px consists of models containing unobserved random variables. It turns
out that Equation 5 cannot be applied in its current form.

3 Latent Variable Models

The latent variable model (LVM) introduces a set of unobserved random variables to explain the
observations. The assumption being, observations are generated by transformations of simpler, but
hidden causes. These hidden variables are denoted by z in contrast to x, the observables. The left
Figure 1a depicts the general latent variable model. The main purpose of include latent variables
is (a) to create more expressive models, (b) add causality between (simpler) latent variables and
(complex) observations.

From Figure 1a, the joint density of LVM factors as

p(x, z) = p(x|z)p(z). (6)

To account for the fact of latent variables, we define a new family of joint densities p(x, z) ∈ Px,z.
Using the law of total probability allows us to rewrite Equation 5 as a maximization over elements
p(x, z)

arg max
p(x,z)∈Px,z

Ex∼p′(x) [log p(x)] = arg max
p(x,z)∈Px,z

Ex∼p′(x)
[
log

∫
z

p(x, z) dz

]
. (7)

The objective remains (usually) intractable because it requires marginalization over the latent vari-
ables, which poses an non-analytical integral. In the following section, Variational Inference (VI) is
introduced. VI algebraically rearranges terms of the Equation 7 to find a surrogate objective that
becomes computationally tractable.
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Figure 1: (a) Latent variable model. Observables x are generated by hidden causes z. (b) Variational
Inference. Computing p(z|x) in latent variable models is often intractable. Instead, Variational Infer-
ence seeks to find the best approximation to p(z|x) from a set q(z|x) ∈ Qz|x of proposal distributions.

4 Variational Inference

In the latent variable setting, Variational Inference (VI) replaces the intractable objective log p(x) of
Equation 7 with a surrogate objective—the so called evidence lower bound ELBO(q, x). Reconsider
the marginal log-likelihood

log p(x) = log

∫
z

p(x, z) dz. (8)

VI introduces a new family of distributions Qz|x, whose members are probability distributions of the
form q(z|x).

log p(x) = log

∫
z

q(z|x)

q(z|x)
p(x, z) dz (9)

= log

∫
z

q(z|x)
p(x, z)

q(z|x)
dz (10)

= logEz∼q(z|x)
[
p(x, z)

q(z|x)

]
. (11)

Using Jensen’s inequality,

log p(x) ≥ Ez∼q(z|x) log

[
p(x, z)

q(z|x)

]
(12)

≡ ELBO(q, x). (13)

The ELBO(q, x) is a lower bound on the evidence p(x), hence the name. It depends on the choice of q
and x. The Appendix C contains an additional derivation using the variational principle. Independent
of how you arrive at ELBO(q, x), the consequences are as follows: Instead of maximizing log p(x), now
we maximize the ELBO(q, x) instead. Combining the maximum likelihood principle from Equation 5
and the ELBO(q, x) leads to versatile optimization framework:

(p̂(x, z), q̂(z|x)) = arg max
p(x,z)∈Px,z,
q(z|x)∈Qz|x

Ex∼p′(x) Ez∼q(z|x) log

[
p(x, z)

q(z|x)

]
. (14)

Optimizing the objective of Equation 14 yields the following quantities

• q(z|x) A model to approximate the inference problem.
• p(x, z) A model of the joint distribution.
• An approximation to the marginal log-likelihood via ELBO(q, x).

Remark In VI we need to be able to evaluate p(x, z). In practice this is often the case. Consider
Bayesian Networks, where the joint distribution often factors into few terms due to independence
assumptions. In addition, in VI p(x, z) is often assumed to be known in advance. That is, no
optimization over Px,z takes place.

The Variational AutoEncoder (VAE) presented in the next section, jointly optimizes over p(x, z) and
q(z|x) using densities parametrized by neural networks.
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5 Variational Autoencoder

Variational Autoencoders (VAE) [1, 2] are a specific instance of models that optimize Equation 14.
Starting from the definition of the ELBO(q, x) in Equation 13 and applying the latent variable model
assumption

p(x, z) = p(x|z)p(z)
leads to

ELBO(q, x) = Ez∼q(z|x) log

[
p(x, z)

q(z|x)

]
(15)

=

∫
z

q(z|x) log p(x|z) dz +

∫
z

q(z|x) log
p(z)

q(z|x)
dz (16)

= Ez∼q(z|x) [log p(x|z)]︸ ︷︷ ︸
Reconstruction likelihood

−DKL(q(z|x) || p(z))︸ ︷︷ ︸
Divergence from prior

, (17)

where we used the fact that

−DKL(q(z) || p(z))=
∫
z

q(z) log
p(z)

q(z)
.

The objective in Equation 14 thus becomes

(p̂(x|z), q̂(z|x)) = arg max
p(x|z)∈Px|z,

q(z|x)∈Qz|x

Ex∼p′(x)
[
Ez∼q(z|x) log p(x|z)−DKL(q(z|x) || p(z))

]
. (18)

VAE assumes parametric families of normal densities

Qz|x = {N (·; θ) : θ ∈ Θ} , θ = (µq,Σq) (19)

Px|z = {N (·;φ) : φ ∈ Φ} , φ = (µp,Σp) . (20)

The prior is assumed to be p(z) = N (·; 0, I). The introduction of parameters allows us to rewrite the
objective of Equation 18 as search over parameters

(θ̂, φ̂) = arg max
θ,φ

Ex∼p′(x) [ELBO(x, θ, φ)] (21)

= arg max
θ,φ

Ex∼p′(x)
[
Ez∼q(z|x;θ) log p(x|z;φ)−DKL(q(z|x; θ) || p(z))

]
(22)

= arg min
θ,φ

Ex∼p′(x)
[
−Ez∼q(z|x;θ) log p(x|z;φ) + DKL(q(z|x; θ) || p(z))

]
(23)

= arg min
θ,φ

L(θ, φ). (24)

Optimization uses (stochastic) gradient descent updates

θ(t+1) = θ(t) − α∇θL(θ(t), φ(t)) (25)

φ(t+1) = φ(t) − β∇φL(θ(t), φ(t)). (26)

Instead of directly optimizing over (µq,Σq), we predict these values by a function approximator
h(x; θ)

h : RD → Rd × Rd (27)

x 7→ (µq,Σq). (28)

Similarly, let g(z;φ) be a function approximator of the following form

g : Rd → Rd × Rd (29)

z 7→ (µp,Σp). (30)

VAE uses two separate neural networks for function approximation. Thus the parameters of the
optimization are the weights of the neural networks. Backpropagation with stochastic gradient de-
scent is used for minimization of L(θ, φ). Taking partial derivatives of L(θ, φ) requires derivatives of
expectations, see Appendix A.

Remark In training Σp is considered a hyper-parameter and is not part of optimization. Usually,
Σp factors as diag(σ2

p). The likelihood term in Equation 17 is of means-squared-error form. This
loss unsuited for perceptual purposes [8] and leads to blurry reconstructions. VAE uses path-wise
derivatives to avoid computing gradients with respect to random number generators.
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6 EM-Algorithm

The EM-Algorithm [9] is used to perform maximum likelihood parameter estimation in partially
observed variable models.

x

z
θ

Figure 2: The parametric latent variable model.

Appendices

A Monte Carlo Approximations

Consider the expectation
Ez∼p(z) [f(z)] .

Here z is a possibly multi-variate random variable z ∈ Rd, and f(z) denotes a scalar function
f : Rd → R. We can approximate the expectation using Monte Carlo integration to obtain noisy
estimates as follows

{zi}i≤N ∼ p(z) (31)

Ez∼p(z) [f(z)] ≈ 1

N

N∑
i=1

[f(zi)] . (32)

That is, we draw N samples according to p(z) and take the mean over {f(zi) : i ≤ N}. This strategy
also applies to derivatives of expectations

∇λ Ez∼p(z) [f(z;λ)] = Ez∼p(z) [∇λf(z;λ)] (33)

≈ 1

N

N∑
i=1

[∇λf(zi;λ)] , (34)

with parameters λ. Swapping derivatives and integrals is not possible in general, see Section A of
Ryan [10]. Missing: unbi-

ased, variance,
variance reduc-
tion,sampling
methods besides
simple sampling

The above approximation covers the case when parameters are part of the function that we take the
expectation over. In addition, strategies for computing approximate derivatives when the parameters
are part of the probability distribution need to be developed. Consider ∇θ−Ez∼q(z|x;θ) [log p(x|z;φ)]
as an example. Finding efficient methods (in terms of convergence) is part of active research [11]. In
the following sub-sections we cover two strategies:

• Score function derivatives
• Pathwise derivatives
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A.1 Score Function Gradients

Consider finding ∇λ Ez∼p(z;λ)[f(z)]. The score function gradient is developed as follows

∇λ Ez∼p(z;λ)[f(z)] = ∇λ
∫
z

f(z)p(z;λ) dz (35)

=

∫
z

f(z)∇λp(z;λ) dz (36)

=

∫
z

f(z)
p(z;λ)

p(z;λ)
∇λp(z;λ) dz (37)

=

∫
z

f(z)p(z;λ)
∇λp(z;λ)

p(z;λ)
dz (38)

=

∫
z

f(z)p(z;λ)∇λ log p(z;λ) dz (39)

= Ez∼p(z;λ) [∇λ log p(z;λ)f(z)] . (40)

The score function gradient [12] allows us to express the derivate of an expectation as the expectation
of a derivative. Thus, we can employ the Monte Carlo approximation to estimate the gradient. The

fundamental trick is the introduction of the identity p(z;λ)
p(z;λ) , which allows two things to happen: (1) the

denominator together with ∇λp(z;λ) leads to to ∇λ log p(z;λ) and (2) the nominator is the missing
term for creating the expectation.

The score function gradient does not require f(z) to be differentiable. On the flip-side it exhibits
higher variance than path-wise derivatives.

A.2 Path-wise Derivatives

We come back to evaluating ∇λ Ez∼p(z;λ)[f(z)]. Path-wise derivatives use LOTUS backwards. To
remove the parameters from p(z;λ), we assume that we are able to find a different distribution
ε ∼ π(ε), ε ∈ RM , independent of λ, such that

z
d
= g(ε;λ), ε ∼ π(ε),

for some function g : RM → Rd (typically M=d). For example any normal distribution N (z;µ, σ2)
can be written as a transformation of a standard normal z = σε+ µ, ε ∼ N (0, 1).

This allows us to rewrite as follows

∇λ Ez∼p(z;λ)[f(z)] = ∇λ Eε∼π(ε)[f(g(ε;λ))] (41)

= Eε∼π(ε) [∇εf(g(ε;λ))] (42)

= Eε∼π(ε) [Jλg(ε;λ)∇zf(z)] , (43)

where Jλ denotes the Jacobian of g with respect of λ. Also path-wise derivatives allow us to express
the derivative of an expectation as the expectation over derivatives. Compared to score function
gradients, path-wise derivatives exhibit less variance, but require f(z) to be differentiable. Path-wise
derivatives are used by the VAE framework.

B Kullback-Leibler Divergence

The asymmetric Kullback-Leibler (KL) divergence is measure between two distributions p, q defined
on the same probability space

DKL(p(x) || q(x)) =

∫
x

p(x) log

[
p(x)

q(x)

]
. (44)

The KL divergence can also be written as an expected value

DKL(p(x) || q(x)) = Ex∼p(x) log

[
p(x)

q(x)

]
. (45)
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It is the expected value of the log of ratios between p and q weighted by p. That is, p(x) ≈ q(x)

implies p(x)
q(x) ≈ 1, implies log p(x)

q(x) ≈ 0. These error terms are then weighted by p(x).

Reconsider density estimation

θ̂ = arg min
θ

DKL(p(x) || q(x; θ)) (46)

leads to q(x; θ̂) that attempts to match p(x) closely wherever p(x) has non-zero density. If p(x) is a

multimodal distribution and q(x; θ) is unimodal, then the resulting effect is that q(x; θ̂) spreads out
over all modes of p(x) (see left plot of Figure 3). This order of arguments in the KL-divergence is
used in deriving maximum likelihood density estimation (see Section 2).

In contrast, minimizing
θ̂ = arg min

θ
DKL(q(x; θ) || p(x)) (47)

leads to q(x; θ̂) that ignores parts of p(x) where q(x; θ̂) has zero density. If p(x) is a multimodal
distribution and q(x; θ) is unimodal, optimizing leads to mode catching of p(x) (see right plot of
Figure 3). This order of arguments in the KL-divergence is used by Variational Inference. (see
Sub-section C and Section 4).

Figure 3: Density estimation by minimizing the KL-divergence between a bi-modal Gaussian mixture
model p(x) and an uni-modal normal distribution q(x). Left: Minimizing DKL(p(x) || q(x)) tends to
put density everywhere p(x) > 0. Right: Minimizing DKL(q(x) || p(x)) tends to chase a single mode.

B.1 Derivation of Density Estimation Gradients

Both plots of Figure 3 are created by an supplementary notebook KL Density Estimation.ipynb.
The gradient derivation contains some tricks that are worth paying attention to.

The setup is as follows. The true distribution p?(x) follows a bimodal Gaussian mixture model,
the empirical distribution is denoted p′(x). For brevity, we will refer to both target distributions
as p(x). The proposal distribution family q(x; θ) ∈ Qx consists of unimodal Gaussian distributions
with parameters θ = (µ, σ2). Note, this example is not concerned with latent variable models. Op-
timization considers two objectives: (1) minimize DKL(p(x) || q(x; θ)); (2) DKL(q(x; θ) || p(x)). Both
optimizations use (stochastic) gradient descent, Monte Carlo sampling to approximate expections
(see Sub-section A) and score function gradients where required (see Sub-section A.1).

Both cases require gradients ∇θ log q(x; θ). For numerical stability and to avoid negative σ2 in opti-
mization, we reparametrize as follows

r = log(σ2)

σ2 = er

7

http://www.numpy.org


and let θ = (µ, r).

∇µ log q(x; θ) = ∇µ log

[
1√

2πer
exp

(
− (x− µ)2

2er

)]
(48)

= ∇µ
[
− log

√
2πer − (x− µ)2

2er

]
(49)

=
x− µ
er

. (50)

Continuing,

∇r log q(x; θ) = ∇r log

[
1√

2πer
exp

(
− (x− µ)2

2er

)]
(51)

= −∇r log
√

2πer −∇r
(x− µ)2

2er
(52)

= −∇r
√

2πer√
2πer

+
(x− µ)2

2er
(53)

= −0.5
(2πer)−0.5(2πer)√

2πer
+

(x− µ)2

2er
(54)

= −0.5

√
2πer√
2πer

+
(x− µ)2

2er
(55)

=
(x− µ)2

2er
− 0.5 (56)

= 0.5(x− µ)2e−r − 0.5. (57)

Case (1). Minimize

θ̂ = arg min
θ

DKL(p(x) || q(x; θ)) (58)

= arg min
θ

Ex∼p(x) log

[
p(x)

q(x; θ)

]
(59)

= arg min
θ

[
Ex∼p(x) log p(x)− Ex∼p(x) log q(x; θ)

]
(60)

= arg min
θ

−Ex∼p(x) log q(x; θ). (61)

The gradient is found to be

−∇θ Ex∼p(x) log q(x; θ) = −Ex∼p(x)∇θ log q(x; θ). (62)

Note that Case (1) allows for a closed-form parameter estimation, yielding the maximum likelihood
estimators of the normal distribution. Consider a sample {xi}i≤N ∼ p(x) and p′(x) the associated
empirical distribution. Then,

−Ex∼p′(x)∇µ log q(x; θ) = 0 (63)

= −
N∑
i=1

1

N

xi − µ
σ2

(64)

⇔ µ =
1

N

N∑
i=1

xi, (65)

and

−Ex∼p′(x)∇σ2 log q(x; θ) = 0 (66)

= −
N∑
i=1

1

N

[
(xi − µ)2

2σ2
− 0.5

]
(67)

⇔ σ2 =
1

N

N∑
i=1

(xi − µ)2. (68)
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Case (2) Find

θ̂ = arg min
θ

DKL(q(x; θ) || p(x)) (69)

= arg min
θ

Ex∼q(x;θ) log

[
q(x; θ)

p(x)

]
(70)

= arg min
θ

Ex∼q(x;θ) f(x; θ), (71)

with f(x; θ) = log
[
q(x;θ)
p(x)

]
. In this task, the parameters are inside f(x; θ) and additionally in the

distribution the expectation is taken over. Noting that

∇θf(x; θ) = ∇θ log

[
q(x; θ)

p(x)

]
(72)

=
p(x)

q(x; θ)

∇θq(x; θ)

p(x)
(73)

=
∇θq(x; θ)

q(x; θ)
(74)

= ∇θ log q(x; θ), (75)

and additionally f(x; θ) = log q(x; θ)− log p(x). Continuing from Equation 71 yields

∇θ Ex∼q(x;θ) f(x; θ) = ∇θ
∫
x

q(x; θ)f(x; θ) dx (76)

=

∫
x

∇θq(x; θ) · f(x; θ) + q(x; θ) · ∇θf(x; θ) dx (77)

=

∫
x

q(x; θ)

q(x; θ)
∇θq(x; θ) · f(x; θ) + q(x; θ) · ∇θf(x; θ) dx (78)

=

∫
x

q(x; θ)∇θ log q(x; θ) · f(x; θ) + q(x; θ) · ∇θf(x; θ) dx (79)

=

∫
x

q(x; θ)∇θ log q(x; θ) · f(x; θ) + q(x; θ) · ∇θ log q(x; θ) dx (80)

=

∫
x

q(x; θ)∇θ log q(x; θ) (f(x; θ) + 1) dx (81)

= Ex∼q(x;θ)∇θ log q(x; θ) (log q(x; θ)− log p(x) + 1) . (82)

C Derivation of ELBO from KL-Divergence

Section 4 derived the ELBO from the log-likelihood. This required the trick of multiplying and
dividing by q(z|x). This section derives the ELBO from a Kullback-Leibler principle.

Variational Inference (VI) is all concerned with inference of the intractable quantity p(z|x). For this
purposes it assumes a set of candidate distributions q(z|x) ∼ Qz|x. The natural objective of VI is
then to minimize the following divergence.

DKL(q(z|x) || p(z|x)) = Eq(z|x) log

[
q(z|x)

p(z|x)

]
(83)

= Eq(z|x) [log q(z|x)− log p(z|x)] (84)

= Eq(z|x) [log q(z|x)− log p(x, z) + log p(x)] (85)

= Eq(z|x) [log q(z|x)− log p(x, z)] + log p(x) (86)

= Eq(z|x) log

[
q(z|x)

p(x, z)

]
+ log p(x), (87)

9



where we used p(z|x) = p(x,z)
p(x) in Equation 85. Rearranging terms in the last equation leads to

log p(x) = DKL(q(z|x) || p(z|x))− Eq(z|x) log

[
q(z|x)

p(x, z)

]
(88)

= DKL(q(z|x) || p(z|x))︸ ︷︷ ︸
≥0

+Eq(z|x) log

[
p(x, z)

q(z|x)

]
(89)

≥ Eq(z|x) log

[
p(x, z)

q(z|x)

]
(90)

≡ ELBO(x). (91)
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