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Abstract

We consider a gradient based parameter optimization of a stochas-
tic computational graph consisting of random scene properties and a de-
terministic, non-differentiable render function. Our approach leverages
ideas from Generative Adverserial Networks (GANs) and gradient esti-
mators from reinforcement learning to jointly optimize all distributional
and structural parameters based on generated images. This document
should be regarded as an unfinished notebook to emphasize our main
idea.

1 Optimization

Consider the objective

arg min
ΩZ

arg max
ΩD

Ex∼p(x) [logD(x; ΩD)] +

Ez∼p(z|ΩZ) [log(1−D(G(z); ΩD))] ,
(1)

a variant of the objective function of GANs [1] modified as follows: The scene
configuration variables z are samples from structured probabilistic model gov-
erned by distributional parameters ΩZ . The generator (render function) G
transforms the scene configuration z into a synthetic image and is assumed to
be non-differentiable and without parameters.

The discriminator D remains unchanged compared to GANs and hence we
do not consider it in the remainder of this discussion. Optimizing ΩZ is not
so straight forward, since G s non-differentiable and the parameters of the op-
timization are distributional. Consider optimal discriminator parameters Ω?

D,

1



then optimizing ΩZ reduces to minimizing

arg min
ΩZ

S(ΩZ) = arg min
ΩZ

Ez∼p(z|ΩZ) [log(1−D(G(z); Ω?
D))]︸ ︷︷ ︸

f(z)

. (2)

In the following we derive the score-function gradient estimator [3, 2] that en-
ables us to apply the ideas of stochastic gradient descent to ΩZ as follows

Ωt+1
Z = Ωt

Z − α∇ΩZ
S(Ωt

Z), (3)

where ∇ΩZ
S(Ωt

Z) is given by

∇ΩZ
S(ΩZ) = ∇ΩZ

Ez∼p(z|ΩZ) f(z)

= ∇ΩZ

∫
p(z | ΩZ)f(z) dz

=

∫
∇ΩZ

p(z | ΩZ)f(z) dz

=

∫
p(z | ΩZ)

p(z | ΩZ)
∇ΩZ

p(z | ΩZ)f(z) dz

=

∫
p(z | ΩZ)∇ΩZ

log p(z | ΩZ)f(z) dz

= Ez∼p(z|ΩZ) [∇ΩZ
log p(z | ΩZ)f(z)] , (4)

The expectation in Equation 4 can be approximated by the following unbiased
estimator

∇ΩZ
S(ΩZ) ≈ 1

N

∑
ẑ

∇ΩZ
log p(ẑ | ΩZ)f(ẑ), (5)

with ẑ ∼ p(ẑ | ΩZ). Note that in the above derivation, G(z) only appears in
the weighting term f(z) for which no gradients are required. Depending on the
probabilistic model log p(ẑ | ΩZ) usually decomposes into simpler terms.

In an oscillating fashion we update the structural parameters ΩD of dis-
criminator and distributional parameters ΩZ until an equilibrium is reached in
which the discriminator cannot distinguish between samples of the target and
the generator distribution.
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