Notes on Semi-Supervised Expectation Maximization

Christoph Heindl
PROFACTOR GmbH, Austria
christoph.heindl@gmail.com

Josef Scharinger
JKU, Austria
josef.scharinger@jku.at

Abstract

This work considers the Expectation Maximization (EM) algorithm in the semi-supervised setting. First, the general form for semi-supervised version of maximum likelihood is derived from the Latent Variable Model (LVM). Since the involved integrals are usually intractable, a surrogate objective function based on the Evidence Lower Bound (ELBO) is introduced. Next, we derive the equations of the semisupervised EM. Finally, the concrete equations for a fitting a Gaussian Mixture Model (GMM) using labeled and unlabeled data are deduced.

1 Introduction

The EM algorithm, first formalized by Dempster et al. [1, is a statistical method for maximum likelihood parameter estimation. It is particularly useful when the model contains latent variables. This work derives the EM equations for the semi-supervised setting, where we can group the set of random variables into fully and partially observed ones.

Consider a generative latent variable model (LVM) as shown in Figure 1. We assume iid observations $\left\{\left(x_{i}, z_{i}\right)\right\}_{i \leq N}$ and partial observations $\left\{\tilde{x}_{j}\right\}_{j \leq M}$. The marginal log-likelihood of the generative probabilistic model associated with the observations is given by

$$
\begin{align*}
\log p(X, Z, \tilde{X} \mid \theta) & =\log \int p(X, Z, \tilde{X}, \tilde{Z} \mid \theta) d \tilde{Z} \\
& =\log \int p(X, Z \mid \theta) p(\tilde{X}, \tilde{Z} \mid \theta) d \tilde{Z} \\
& =\log p(X, Z \mid \theta) \int p(\tilde{X}, \tilde{Z} \mid \theta) d \tilde{Z} \\
& =\log p(X, Z \mid \theta)+\log \int p(\tilde{X}, \tilde{Z} \mid \theta) d \tilde{Z} \tag{1}
\end{align*}
$$

where we have made use of the independence assumptions of our model, abbreviated $\left\{X_{i}\right\}_{i \leq N}$ by X and similar for the other types of random variables. Equation 1 is called the generative approach to semi-supervised learning. Often, this equation is seen with an additional balancing factor

$$
\log p(X, Z \mid \theta)+\lambda \log \int p(\tilde{X}, \tilde{Z} \mid \theta) d \tilde{Z}
$$

In semi-supervised learning then seeks to maximize the marginal likelihood by estimating θ so that

$$
\begin{align*}
\theta^{*} & =\underset{\theta}{\arg \max } \log p(X, Z, \tilde{X} \mid \theta) \tag{2}\\
& =\underset{\theta}{\arg \max }\left[\log p(X, Z \mid \theta)+\log \int p(\tilde{X}, \tilde{Z} \mid \theta) d \tilde{Z}\right] \tag{3}
\end{align*}
$$

In practice the integral of the second term on the right hand side (rhs) is often intractable. We therefore seek to find a surrogate objective that is tractable - the evidence lower bound (ELBO).

Figure 1: Generative latent variable model for the semi-supervised case.

2 ELBO in the Semi-Supervised Setting

Consider the following inequality derived from Equation 1.

$$
\begin{array}{rlr}
\log p(X, Z, \tilde{X} \mid \theta) & =\log \int p(X, Z, \tilde{X}, \tilde{Z} \mid \theta) d \tilde{Z} \\
& =\log \int q(\tilde{Z}) \frac{p(X, Z, \tilde{X}, \tilde{Z} \mid \theta)}{q(\tilde{Z})} d \tilde{Z} \\
& \geq \int q(\tilde{Z}) \log \frac{p(X, Z, \tilde{X}, \tilde{Z} \mid \theta)}{q(\tilde{Z})} d \tilde{Z} & \\
& =\int q(\tilde{Z}) \log \frac{p(X, Z \mid \theta) p(\tilde{X}, \tilde{Z} \mid \theta)}{q(\tilde{Z})} d \tilde{Z} & \text { by Jensen's ineq. } \\
& =\int q(\tilde{Z})\left[\log p(X, Z \mid \theta)+\log \frac{p(\tilde{X}, \tilde{Z} \mid \theta)}{q(\tilde{Z})}\right] d \tilde{Z} & \text { by LVM assumptions } \\
& =\int q(\tilde{Z}) \log p(X, Z \mid \theta) d \tilde{Z}+\int q(\tilde{Z}) \log \frac{p(\tilde{X}, \tilde{Z} \mid \theta)}{q(\tilde{Z})} d \tilde{Z} & \\
& =\log p(X, Z \mid \theta) \underbrace{\int q(\tilde{Z}) d \tilde{Z}}_{=1}+\int q(\tilde{Z}) \log \frac{p(\tilde{X}, \tilde{Z} \mid \theta)}{q(\tilde{Z})} d \tilde{Z} & \\
& =\log p(X, Z \mid \theta)+\underbrace{\int q(\tilde{Z}) \log \frac{p(\tilde{X}, \tilde{Z} \mid \theta)}{q(\tilde{Z})} d \tilde{Z}} \\
& =\log p(X, Z \mid \theta)+\underbrace{\mathbb{E}_{\tilde{Z}} \log \frac{p(\tilde{X}, \tilde{Z} \mid \theta)}{q(\tilde{Z})}}_{\tilde{Z} \sim q(\tilde{Z})} \\
& =\mathcal{F}(q, \theta) . \tag{5}
\end{array}
$$

In the above we abbreviated $q(\tilde{Z} \mid X, Z, \tilde{X}, \theta)$ by $q(\tilde{Z})$ to avoid clutter.

3 EM in the Semi-Supervised Setting

The expectation maximization algorithm iteratively maximizes

$$
(\hat{q}, \hat{\theta})=\underset{q, \theta}{\arg \max } \mathcal{F}(q, \theta) .
$$

Let us introduce a 'time' dependency on parameters θ^{t} and the form of $q(\tilde{Z})^{t}$. In the E-step we optimize

$$
q^{t+1}=\underset{q}{\arg \max } \mathcal{F}\left(q, \theta^{t}\right)
$$

It is well known that choosing

$$
q^{t+1}(\tilde{Z})=p\left(\tilde{Z} \mid X, Z, \tilde{X}, \theta^{t}\right)
$$

makes the ELBO tight(i.e turn Inequality 4 into an equality). In the LVM case the above simplifies due to independence assumptions as follows

$$
\begin{equation*}
q^{t+1}(\tilde{Z})=p\left(\tilde{Z} \mid \tilde{X}, \theta^{t}\right) \tag{6}
\end{equation*}
$$

Remark Plugging Equation 6 into $\mathcal{F}\left(q^{t+1}, \theta^{t}\right)$ leads to an equality between the marginal log-likelihood and the left hand side (lhs), i.e. makes the bound is tight. We can also see this by starting from the KL-divergence as follows

$$
K L\left(q^{t+1}\left(\tilde{Z} \mid \tilde{X}, X, Z, \theta^{t}\right), p\left(\tilde{Z} \mid \tilde{X}, X, Z, \theta^{t}\right)\right)
$$

which leads to

$$
\log p\left(X, Z, \tilde{X} \mid \theta^{t}\right)=\log p\left(X, Z \mid \theta^{t}\right)+E L B O\left(q^{t+1}, \theta^{t}\right)+K L\left(q^{t+1}\left(\tilde{Z} \mid \tilde{X}, X, Z, \theta^{t}\right), p\left(\tilde{Z} \mid \tilde{X}, X, Z, \theta^{t}\right)\right)
$$

Setting $q^{t+1}(\tilde{Z})=p\left(\tilde{Z} \mid \tilde{X}, X, Z, \theta^{t}\right)$ leads to a vanishing KL term and we arrive at $\mathcal{F}\left(q^{t+1}, \theta^{t}\right)$-therefore holding with equality.

Remark Note that in the E-Step the term involving supervised data $\log p(X, Z \mid \theta)$ does not depend on q and thus does not influence the shape of q. Intuitively this happens because (1) we explicity introduce a distribution q only over the unobserved variables \tilde{Z} and (2) the independence assumptions of the LVM leads to this specific factorization.

In the M-Step we optimize

$$
\begin{align*}
\theta^{t+1} & =\underset{\theta}{\arg \max } \mathcal{F}\left(q^{t+1}, \theta\right) \tag{7}\\
& =\underset{\theta}{\arg \max } \log p(X, Z \mid \theta)+\mathbb{E}_{\tilde{Z} \sim q^{t+1}(\tilde{Z})} \log \frac{p(\tilde{X}, \tilde{Z} \mid \theta)}{q^{t+1}(\tilde{Z})} \\
& =\underset{\theta}{\arg \max } \log p(X, Z \mid \theta)+\mathbb{E}_{\tilde{Z} \sim q^{t+1}(\tilde{Z})} \log p(\tilde{X}, \tilde{Z} \mid \theta) \underbrace{-\mathbb{E}_{\tilde{Z} \sim q^{t+1}(\tilde{Z})} \log q^{t+1}(\tilde{Z})}_{H\left(q^{t+1}\right)} \\
& =\underset{\theta}{\arg \max } \log p(X, Z \mid \theta)+\mathbb{E}_{\tilde{Z} \sim q^{t+1}(\tilde{Z})} \log p(\tilde{X}, \tilde{Z} \mid \theta) . \tag{8}
\end{align*}
$$

Here we were able to drop the entropy of $q^{t+1}(\tilde{Z})$ denoted by $H\left(q^{t+1}\right)$, because q^{t+1} depends only on θ^{t} which is considered fixed when optimizing for θ. Both steps are iterated until convergence.

Remark Comparing the semi-supervised EM variant to the classical unsupervised one leads to only minor differences: The E-Step is practically the same, as both construct q over \tilde{Z}. The difference in the M-Step is that the classical variant misses the additive term $\log p(x, z \mid \theta)$ in Equation 8 .

Remark EM assumes we can compute

$$
q^{t+1}(\tilde{Z})=p\left(\tilde{Z} \mid \tilde{X}, \theta^{t}\right)
$$

If $p\left(\tilde{Z} \mid \tilde{X}, \theta^{t}\right)$ is intractable, we can resort to variational $E M$, that uses an arbitrary distribution q that is tractable. The E-step then becomes an optimization problem on its own.

3.1 Simplifications by Fully Factorized q

Here we want to focus on how $\mathcal{F}(q, \theta)$ simplifies in the E-step and M-step of EM algorithm when we assuming an LVM model and a fully factorized $q(\tilde{Z})$. The joint distribution in the LVM model, given parameters θ,
factors as follows

$$
p(X, Z, \tilde{X}, \tilde{Z} \mid \theta)=\prod_{i=1}^{N} p\left(X_{i}, Z_{i} \mid \theta\right) \prod_{j=1}^{M} p\left(\tilde{X}_{j}, \tilde{Z}_{j} \mid \theta\right)
$$

In addition we assume that $q(\tilde{Z})$ factors as

$$
q^{t+1}(\tilde{Z})=\prod_{j=1}^{M} q_{j}^{t+1}\left(\tilde{Z}_{j}\right)
$$

To avoid clutter we drop the time index from q in subsequent steps.

3.1.1 M-Step

By Equation 8 the M-Step optimizes

$$
\theta^{t+1}=\underset{\theta}{\arg \max } \log p(X, Z \mid \theta)+\mathbb{E}_{\tilde{Z} \sim q(\tilde{Z})} \log p(\tilde{X}, \tilde{Z} \mid \theta)
$$

For convenience in the following derivations, we rewrite the above equation using two helper functions

$$
\theta^{t+1}=\underset{\theta}{\arg \max } A(\theta)+B(\theta)
$$

Next, we study the factorization of each function separately. The factorization of function $A(\theta)$ is trivial as it does not involve q

$$
\begin{equation*}
A(\theta)=\log p(X, Z \mid \theta)=\sum_{i=1}^{N}\left[\log p\left(Z_{i} \mid \theta\right)+\log p\left(X_{i} \mid Z_{i}, \theta\right)\right] \tag{9}
\end{equation*}
$$

The simplification of $B(\theta)$ is more involved

$$
\begin{align*}
& B(\theta)=\mathbb{E}_{\tilde{Z} \sim q(\tilde{Z})} \log p(\tilde{X}, \tilde{Z} \mid \theta) \\
& =\int_{\tilde{Z}} q(\tilde{Z}) \log p(\tilde{X}, \tilde{Z} \mid \theta) d \tilde{Z} \\
& =\int_{\tilde{Z}_{1}} \cdots \int_{\tilde{Z}_{M}} \prod_{j=1}^{M} q_{j}\left(\tilde{Z}_{j}\right) \log \prod_{j=1}^{M} p\left(\tilde{X}_{j}, \tilde{Z}_{j} \mid \theta\right) d \tilde{Z}_{M} \ldots d \tilde{Z}_{1} \\
& =\int_{\tilde{Z}_{1}} \cdots \int_{\tilde{Z}_{M}} \prod_{j=1}^{M} q_{j}\left(\tilde{Z}_{j}\right) \sum_{j=1}^{M} \log p\left(\tilde{X}_{j}, \tilde{Z}_{j} \mid \theta\right) d \tilde{Z}_{M} \ldots d \tilde{Z}_{1} \\
& =\int_{\tilde{Z}_{1}} \ldots \int_{\tilde{Z}_{M}} \sum_{j=1}^{M}\left(\prod_{k=1}^{M} q_{k}\left(\tilde{Z}_{k}\right)\right) \log p\left(\tilde{X}_{j}, \tilde{Z}_{j} \mid \theta\right) d \tilde{Z}_{M} \ldots d \tilde{Z}_{1} \\
& =\int_{\tilde{Z}_{1}} \cdots \int_{\tilde{Z}_{M}}\left[q_{1}\left(\tilde{Z}_{1}\right) q_{2}\left(\tilde{Z}_{2}\right) \cdots q_{M}\left(\tilde{Z}_{M}\right) \log p\left(\tilde{X}_{1}, \tilde{Z}_{1} \mid \theta\right)+\cdots\right. \\
& \left.+q_{1}\left(\tilde{Z}_{1}\right) q_{2}\left(\tilde{Z}_{2}\right) \cdots q_{M}\left(\tilde{Z}_{M}\right) \log p\left(\tilde{X}_{M}, \tilde{Z}_{M} \mid \theta\right)\right] d \tilde{Z}_{M} \ldots d \tilde{Z}_{1} \\
& =\int_{\tilde{Z}_{1}} \cdots \int_{\tilde{Z}_{M-1}}\left[\int_{\tilde{Z}_{M}} q_{1}\left(\tilde{Z}_{1}\right) q_{2}\left(\tilde{Z}_{2}\right) \cdots q_{M}\left(\tilde{Z}_{M}\right) \log p\left(\tilde{X}_{1}, \tilde{Z}_{1} \mid \theta\right) d \tilde{Z}_{M}+\cdots\right. \\
& \left.+\int_{\tilde{Z}_{M}} q_{1}\left(\tilde{Z}_{1}\right) q_{2}\left(\tilde{Z}_{2}\right) \cdots q_{M}\left(\tilde{Z}_{M}\right) \log p\left(\tilde{X}_{M}, \tilde{Z}_{M} \mid \theta\right) d \tilde{Z}_{M}\right] d \tilde{Z}_{M-1} \ldots d \tilde{Z}_{1} \\
& =\int_{\tilde{Z}_{1}} \cdots \int_{\tilde{Z}_{M-1}}[q_{1}\left(\tilde{Z}_{1}\right) q_{2}\left(\tilde{Z}_{2}\right) \cdots q_{M-1}\left(\tilde{Z}_{M-1}\right) \log p\left(\tilde{X}_{1}, \tilde{Z}_{1} \mid \theta\right) \underbrace{\int_{\tilde{Z}_{M}} q_{M}\left(\tilde{Z}_{M}\right) d \tilde{Z}_{M}}_{=1}+\cdots \\
& \left.+q_{1}\left(\tilde{Z}_{1}\right) q_{2}\left(\tilde{Z}_{2}\right) \cdots q_{M-1}\left(\tilde{Z}_{M-1}\right) \int_{\tilde{Z}_{M}} q_{M}\left(\tilde{Z}_{M}\right) \log p\left(\tilde{X}_{M}, \tilde{Z}_{M} \mid \theta\right) d \tilde{Z}_{M}\right] d \tilde{Z}_{M-1} \ldots d \tilde{Z}_{1} \\
& =\int_{\tilde{Z}_{1}} \ldots \int_{\tilde{Z}_{M-1}} \prod_{j=1}^{M-1} q_{j}\left(\tilde{Z}_{j}\right)\left[\sum_{j=1}^{M-1} \log p\left(\tilde{X}_{j}, \tilde{Z}_{j} \mid \theta\right)+\int_{\tilde{Z}_{M}} q_{M}\left(\tilde{Z}_{M}\right) \log p\left(\tilde{X}_{M}, \tilde{Z}_{M} \mid \theta\right) d \tilde{Z}_{M}\right] d \tilde{Z}_{M-1} \ldots d \tilde{Z}_{1} \\
& =\int_{\tilde{Z}_{1}} \cdots \int_{\tilde{Z}_{M-1}} \prod_{j=1}^{M-1} q_{j}\left(\tilde{Z}_{j}\right) \sum_{j=1}^{M-1} \log p\left(\tilde{X}_{j}, \tilde{Z}_{j} \mid \theta\right) d \tilde{Z}_{M-1} \ldots d \tilde{Z}_{1} \\
& +\int_{\tilde{Z}_{M}} q_{M}\left(\tilde{Z}_{M}\right) \log p\left(\tilde{X}_{M}, \tilde{Z}_{M} \mid \theta\right) d \tilde{Z}_{M} \underbrace{\int_{\tilde{Z}_{1}} \ldots \int_{\tilde{Z}_{M-1}} \prod_{j=1}^{M-1} q_{j}\left(\tilde{Z}_{j}\right) d \tilde{Z}_{M-1} \ldots d \tilde{Z}_{1}}_{=1} \\
& =\int_{\tilde{Z}_{1}} \cdots \int_{\tilde{Z}_{M-1}} \prod_{j=1}^{M-1} q_{j}\left(\tilde{Z}_{j}\right) \sum_{j=1}^{M-1} \log p\left(\tilde{X}_{j}, \tilde{Z}_{j} \mid \theta\right) d \tilde{Z}_{M-1} \ldots d \tilde{Z}_{1} \\
& +\int_{\tilde{Z}_{M}} q_{M}\left(\tilde{Z}_{M}\right) \log p\left(\tilde{X}_{M}, \tilde{Z}_{M} \mid \theta\right) d \tilde{Z}_{M} . \tag{10}
\end{align*}
$$

Equation 10 tells us that the M th term can be separated from the remaining $M-1$ terms. Repeating the
same argument iteratively leads to

$$
\begin{equation*}
B(\theta)=\mathbb{E}_{\tilde{Z} \sim q(\tilde{Z})} \log p(\tilde{X}, \tilde{Z} \mid \theta)=\sum_{j=1}^{M} \int_{\tilde{Z}_{j}} q_{j}\left(\tilde{Z}_{j}\right) \log p\left(\tilde{X}_{j}, \tilde{Z}_{j} \mid \theta\right) d \tilde{Z}_{j} \tag{11}
\end{equation*}
$$

Finally, we can solve for θ^{t+1} by setting the gradient to zero

$$
\begin{equation*}
\nabla_{\theta} \mathcal{F}\left(q^{t+1}, \theta\right)=\mathbf{0} \tag{12}
\end{equation*}
$$

4 Gaussian Mixture Model

In this section we apply the EM to learn a finite Gaussian Mixture Model (GMM) in the semi-supervised setting. The repository https://github.com/cheind/semi-supervised-em contains exemplary source code.
The generative process of a GMM with K is

$$
\begin{align*}
Z \mid \theta & \sim C a t\left(\alpha_{1} \ldots \alpha_{K}\right) \tag{13}\\
X \mid Z, \theta & \sim N\left(\mu_{z}, \sigma_{z}^{2}\right) \tag{14}
\end{align*}
$$

From Figure 1 we see that the above equations are the same for random variables \tilde{X}, \tilde{Z}. The parameters θ of the model are

$$
\begin{equation*}
\theta=\left\{\alpha_{1} \ldots \alpha_{K}, \mu_{1} \ldots \mu_{K}, \sigma_{1}^{2} \ldots \sigma_{K}^{2}\right\} \tag{15}
\end{equation*}
$$

4.1 E-Step

By Equation 6 we seek to find

$$
q^{t+1}(\tilde{Z})=p\left(\tilde{Z} \mid \tilde{X}, \theta^{t}\right)
$$

Using the factoring assumptions of q, it suffices to find

$$
q_{j}^{t+1}\left(\tilde{Z}_{j}\right)=p\left(\tilde{Z}_{j} \mid \tilde{X}_{j}, \theta^{t}\right)
$$

Recall the joint distribution of partial observed random variables according to our model

$$
p\left(\tilde{Z}_{j}, \tilde{X}_{j} \mid \theta^{t}\right)=p\left(\tilde{Z}_{j} \mid \theta^{t}\right) p\left(\tilde{X}_{j} \mid \tilde{Z}_{j}, \theta^{t}\right)
$$

By Bayes rule

$$
\begin{align*}
p\left(\tilde{Z}_{j} \mid \tilde{X}_{j}, \theta^{t}\right) & =\frac{p\left(\tilde{Z}_{j} \mid \theta^{t}\right) p\left(\tilde{X}_{j} \mid \tilde{Z}_{j}, \theta^{t}\right)}{p\left(\tilde{X}_{j} \mid \theta^{t}\right)} \tag{16}\\
& =\frac{p\left(\tilde{Z}_{j} \mid \theta^{t}\right) p\left(\tilde{X}_{j} \mid \tilde{Z}_{j}, \theta^{t}\right)}{\sum_{k=1}^{K} p\left(\tilde{Z}_{k}=k \mid \theta^{t}\right) p\left(\tilde{X}_{j} \mid \tilde{Z}_{k}=k, \theta^{t}\right)} \tag{17}\\
& =q^{t+1}\left(\tilde{Z}_{j} \mid \tilde{X}_{j}, \theta^{t}\right) \tag{18}
\end{align*}
$$

$p\left(\tilde{Z}_{j} \mid \tilde{X}_{j}, \theta^{t}\right)$ is called the responsibility and corresponds to soft-assignments of data to components given the current parameter estimates.

4.2 M-Step

In the M-Step we solve for θ^{t+1} by Equation 12

$$
\nabla_{\theta} \mathcal{F}\left(q^{t+1}, \theta\right)=\mathbf{0}
$$

We consider parameters in the following order μ_{k}, σ_{k}^{2} and finally α_{k}.

4.2.1 M-Step with respect to μ_{k}

Recalling Equation 8, substituting results from Equation 9 , Equation 11 and taking partial derivative with respect to μ_{k} and setting to zero, gives

$$
\begin{align*}
\frac{\partial \mathcal{F}\left(q^{t+1}, \theta\right)}{\partial \mu_{k}}= & \frac{\partial}{\partial \mu_{k}} \sum_{i=1}^{N} \log p\left(X_{i}=x_{i}, Z_{i}=z_{i} \mid \theta\right)+\frac{\partial}{\partial \mu_{k}} \sum_{j=1}^{M} \sum_{z=1}^{K} q_{j}\left(\tilde{Z}_{j}=z\right) \log p\left(\tilde{X}_{j}=\tilde{x}_{j}, \tilde{Z}_{j}=z \mid \theta\right) \\
= & \frac{\partial}{\partial \mu_{k}} \sum_{i=1}^{N} \delta_{z_{i} k} \log p\left(X_{i}=x_{i} \mid Z_{i}=k, \theta\right)+\frac{\partial}{\partial \mu_{k}} \sum_{j=1}^{M} q_{j}\left(\tilde{Z}_{j}=k\right) \log p\left(\tilde{X}_{j}=\tilde{x}_{j} \mid \tilde{Z}_{j}=k, \theta\right) \tag{19}\\
= & \sum_{i=1}^{N} \delta_{z_{i} k} \frac{\partial}{\partial \mu_{k}}\left[-\log \left(\sqrt{2 \pi \sigma_{k}^{2}}\right)-\frac{1}{2 \sigma_{k}^{2}}\left(x_{i}-\mu_{k}\right)^{2}\right] \\
& +\sum_{j=1}^{M} q_{j}\left(\tilde{Z}_{j}=k\right) \frac{\partial}{\partial \mu_{k}}\left[-\log \left(\sqrt{2 \pi \sigma_{k}^{2}}\right)-\frac{1}{2 \sigma_{k}^{2}}\left(\tilde{x}_{j}-\mu_{k}\right)^{2}\right] \tag{20}\\
= & \frac{1}{\sigma_{k}^{2}} \sum_{i=1}^{N} \delta_{z_{i} k}\left(x_{i}-\mu_{k}\right)+\frac{1}{\sigma_{k}^{2}} \sum_{j=1}^{M} q_{j}\left(\tilde{Z}_{j}=k\right)\left(\tilde{x}_{j}-\mu_{k}\right)=0 \\
\Leftrightarrow & \mu_{k}=\frac{\sum_{i=1}^{N} \delta_{z_{i} k} x_{i}+\sum_{j=1}^{M} q_{j}\left(\tilde{Z}_{j}=k\right) \tilde{x}_{j}}{\sum_{i=1}^{N} \delta_{z_{i} k}+\sum_{j=1}^{M} q_{j}\left(\tilde{Z}_{j}=k\right)} \tag{21}
\end{align*}
$$

Equation 19 made use of properties of \log and dropping terms that does not depend on μ_{k}. In Equation 20 probabilities are substituted for concrete GMM densities.

4.2.2 M-Step with respect to σ_{k}^{2}

The derivation is similar as for μ_{k}. Starting from Equation 20 we have

$$
\begin{align*}
& \frac{\partial \mathcal{F}\left(q^{t+1}, \theta\right)}{\partial \sigma_{k}^{2}}=\sum_{i=1}^{N} \delta_{z_{i} k} \frac{\partial}{\partial \mu_{k}}\left[-\log \left(\sqrt{2 \pi \sigma_{k}^{2}}\right)-\frac{1}{2 \sigma_{k}^{2}}\left(x_{i}-\mu_{k}\right)^{2}\right] \\
& +\sum_{j=1}^{M} q_{j}\left(\tilde{Z}_{j}=k\right) \frac{\partial}{\partial \mu_{k}}\left[-\log \left(\sqrt{2 \pi \sigma_{k}^{2}}\right)-\frac{1}{2 \sigma_{k}^{2}}\left(\tilde{x}_{j}-\mu_{k}\right)^{2}\right] \\
& =\sum_{i=1}^{N} \delta_{z_{i} k} \frac{\partial}{\partial \mu_{k}}\left[-\frac{1}{2} \log \left(2 \pi \sigma_{k}^{2}\right)-\frac{1}{2 \sigma_{k}^{2}}\left(x_{i}-\mu_{k}\right)^{2}\right] \\
& +\sum_{j=1}^{M} q_{j}\left(\tilde{Z}_{j}=k\right) \frac{\partial}{\partial \mu_{k}}\left[-\frac{1}{2} \log \left(2 \pi \sigma_{k}^{2}\right)-\frac{1}{2 \sigma_{k}^{2}}\left(\tilde{x}_{j}-\mu_{k}\right)^{2}\right] \\
& =\sum_{i=1}^{N} \delta_{z_{i} k}\left[-\frac{1}{2 \sigma_{k}^{2}}+\frac{1}{2 \sigma_{k}^{4}}\left(x_{i}-\mu_{k}\right)^{2}\right]+\sum_{j=1}^{M} q_{j}\left(\tilde{Z}_{j}=k\right)\left[-\frac{1}{2 \sigma_{k}^{2}}+\frac{1}{2 \sigma_{k}^{4}}\left(\tilde{x}_{j}-\mu_{k}\right)^{2}\right] \tag{22}\\
& =\sum_{i=1}^{N} \delta_{z_{i} k}\left[-\frac{\sigma_{k}^{2}}{2 \sigma_{k}^{4}}+\frac{1}{2 \sigma_{k}^{4}}\left(x_{i}-\mu_{k}\right)^{2}\right]+\sum_{j=1}^{M} q_{j}\left(\tilde{Z}_{j}=k\right)\left[-\frac{\sigma_{k}^{2}}{2 \sigma_{k}^{4}}+\frac{1}{2 \sigma_{k}^{4}}\left(\tilde{x}_{j}-\mu_{k}\right)^{2}\right] \\
& =-\frac{\sigma_{k}^{2}}{2 \sigma_{k}^{4}} \sum_{i=1}^{N} \delta_{z_{i} k}+\frac{1}{2 \sigma_{k}^{4}} \sum_{i=1}^{N} \delta_{z_{i} k}\left(x_{i}-\mu_{k}\right)^{2}-\frac{\sigma_{k}^{2}}{2 \sigma_{k}^{4}} \sum_{j=1}^{M} q_{j}\left(\tilde{Z}_{j}=k\right)+\frac{1}{2 \sigma_{k}^{4}} \sum_{j=1}^{M} q_{j}\left(\tilde{Z}_{j}=k\right)\left(\tilde{x}_{j}-\mu_{k}\right)^{2} \\
& =-\frac{\sigma_{k}^{2}}{2 \sigma_{k}^{4}}\left[\sum_{i=1}^{N} \delta_{z_{i} k}+\sum_{j=1}^{M} q_{j}\left(\tilde{Z}_{j}=k\right)\right]+\frac{1}{2 \sigma_{k}^{4}}\left[\sum_{i=1}^{N} \delta_{z_{i} k}\left(x_{i}-\mu_{k}\right)^{2}+\sum_{j=1}^{M} q_{j}\left(\tilde{Z}_{j}=k\right)\left(\tilde{x}_{j}-\mu_{k}\right)^{2}\right]=0 \\
& \Leftrightarrow \sigma_{k}^{2}=\frac{\sum_{i=1}^{N} \delta_{z_{i} k}\left(x_{i}-\mu_{k}\right)^{2}+\sum_{j=1}^{M} q_{j}\left(\tilde{Z}_{j}=k\right)\left(\tilde{x}_{j}-\mu_{k}\right)^{2}}{\sum_{i=1}^{N} \delta_{z_{i} k}+\sum_{j=1}^{M} q_{j}\left(\tilde{Z}_{j}=k\right)} \text {. } \tag{23}
\end{align*}
$$

In Equation 22 the fourth-power appears because $r=\sigma^{2}, \frac{\partial}{\partial r} \frac{1}{r}=-\frac{1}{r^{2}}=-\frac{1}{\sigma^{4}}$.

4.2.3 M-Step with respect to α_{k}

When optimizing α_{k} we need to take into account the constraint that $\alpha_{1} \ldots \alpha_{K}$ needs to be a valid probability mass function and thus needs to sum to one. By the method of Lagrangian multipliers we have

$$
\mathcal{L}\left(q^{t+1}, \theta, \lambda\right)=\mathcal{F}\left(q^{t+1}, \theta\right)+\lambda\left(\sum_{z=1}^{K} \alpha_{z}-1\right)
$$

and thus

$$
\nabla_{\left\{\alpha_{k}, \lambda\right\}} \mathcal{L}\left(q^{t+1}, \theta, \lambda\right)=\mathbf{0}
$$

Note that the PMF of the categorical distribution is given by

$$
\begin{equation*}
p(Z=z \mid \theta)=\prod_{i=1}^{K} \alpha_{i}^{\delta_{z i}} \tag{24}
\end{equation*}
$$

Then, the partial derivative with respect to α_{k} is given by

$$
\begin{align*}
& \frac{\partial \mathcal{L}\left(q^{t+1}, \theta, \lambda\right)}{\partial \alpha_{k}}=\frac{\partial}{\partial \alpha_{k}}\left[\mathcal{F}\left(q^{t+1}, \theta\right)+\lambda\left(\sum_{z=1}^{K} \alpha_{z}-1\right)\right] \\
& =\frac{\partial}{\partial \alpha_{k}} \sum_{i=1}^{N} \log p\left(X_{i}=x_{i}, Z_{i}=z_{i} \mid \theta\right) \\
& +\frac{\partial}{\partial \alpha_{k}} \sum_{j=1}^{M} \sum_{z=1}^{K} q_{j}\left(\tilde{Z}_{j}=z\right) \log p\left(\tilde{X}_{j}=\tilde{x}_{j}, \tilde{Z}_{j}=z \mid \theta\right) \\
& +\frac{\partial}{\partial \alpha_{k}} \lambda\left(\sum_{z=1}^{K} \alpha_{z}-1\right) \\
& =\frac{\partial}{\partial \alpha_{k}} \sum_{i=1}^{N} \delta_{z_{i} k} \log p\left(Z_{i}=k \mid \theta\right) \\
& +\frac{\partial}{\partial \alpha_{k}} \sum_{j=1}^{M} q_{j}\left(\tilde{Z}_{j}=k\right) \log p\left(\tilde{Z}_{j}=k \mid \theta\right) \\
& +\lambda \\
& =\frac{\partial}{\partial \alpha_{k}} \sum_{i=1}^{N} \delta_{z_{i} k} \log \prod_{l=1}^{K} \alpha_{l}^{\delta_{k l}} \\
& +\frac{\partial}{\partial \alpha_{k}} \sum_{j=1}^{M} q_{j}\left(\tilde{Z}_{j}=k\right) \log \prod_{l=1}^{K} \alpha_{l}^{\delta_{k l}} \\
& +\lambda \\
& =\sum_{i=1}^{N} \delta_{z_{i} k} \frac{\partial}{\partial \alpha_{k}} \log \alpha_{k}+\sum_{j=1}^{M} q_{j}\left(\tilde{Z}_{j}=k\right) \frac{\partial}{\partial \alpha_{k}} \log \alpha_{k}+\lambda \\
& =\frac{1}{\alpha_{k}} \sum_{i=1}^{N} \delta_{z_{i} k}+\frac{1}{\alpha_{k}} \sum_{j=1}^{M} q_{j}\left(\tilde{Z}_{j}=k\right)+\lambda=0 \\
& =\frac{1}{\alpha_{k}}\left[\sum_{i=1}^{N} \delta_{z_{i} k}+\sum_{j=1}^{M} q_{j}\left(\tilde{Z}_{j}=k\right)\right]+\lambda=0 \\
& \Leftrightarrow \alpha_{k}=-\frac{\sum_{i=1}^{N} \delta_{z_{i} k}+\sum_{j=1}^{M} q_{j}\left(\tilde{Z}_{j}=k\right)}{\lambda}=-\frac{N_{k}}{\lambda} \text {. } \tag{25}
\end{align*}
$$

Equating our original constraint $\sum_{z=1}^{K} \alpha_{z}=1$ together with $\sum_{z=1}^{K}-\frac{N_{z}}{\lambda}=1$ we solve for λ as follows

$$
\begin{align*}
-\sum_{z=1}^{K} \frac{N_{z}}{\lambda} & =1 \\
-\frac{1}{\lambda} \sum_{z=1}^{K} N_{z} & =1 \\
\lambda & =-\sum_{z=1}^{K} N_{z} . \tag{26}
\end{align*}
$$

Plugging Equation 26 into Equation 25 yields

$$
\begin{equation*}
\alpha_{k}=\frac{N_{k}}{\sum_{z=1}^{K} N_{z}} \tag{27}
\end{equation*}
$$

References

[1] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1):1-22, 1977.

