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ABSTRACT
The success of deep learning has revolutionized many fields of
research including areas of computer vision, text and speech pro-
cessing. Enormous research efforts have led to numerous methods
that are capable of efficiently analyzing data, especially in the Eu-
clidean space. However, many problems are posed in non-Euclidean
domains modeled as general graphs with complex connection pat-
terns. Increased problem complexity and computational power con-
straints have limited early approaches to static and small-sized
graphs. In recent years, a rising interest in machine learning on
graph-structured data has been accompanied by improved methods
that overcome the limitations of their predecessors. These meth-
ods paved the way for dealing with large-scale and time-dynamic
graphs. This work aims to provide an overview of early and modern
graph neural network based machine learning methods for node-
level prediction tasks. Under the umbrella of taxonomies already
established in the literature, we explain the core concepts and pro-
vide detailed explanations for convolutional methods that have had
strong impact. In addition, we introduce common benchmarks and
present selected applications from various areas. Finally, we discuss
open problems for further research.

1 INTRODUCTION

The end of the last millennium marks the beginning of a revolution
in machine learning. Gradient-based learning applied to multi-layer
neural networks showed that feature representations can be learned
instead of creating them manually [Lecun et al. 1998]. In the fol-
lowing years, increased computing power led to network archi-
tectures with an increasing number of hidden layers. Such deeply
learned architectures often outperformed conventional methods
by large margins. Successful examples include image classification
[Krizhevsky et al. 2012], speech sentence recognition [Dahl et al.
2011] and text translation [Gehring et al. 2017]. The success of the
aforementioned examples is to a large extend based on two proper-
ties: a) an Euclidean data domain is underlying the regular structure
of images, language and text and b) convolutional filters are capable
of efficiently processing data in such Euclidean domains.

In recent years the interest in applying machine learning to non-
Euclidean domains has increased. Non-Euclidean data does not
exhibit a regular structure such as images/sound or text, but in-
stead is modelled by arbitrary graphs consisting of nodes, edges and
attributes. Applications of this form are widespread [Bronstein et al.
2017]: In computer graphics operations on 3D objects can be repre-
sented as methods operating on mesh-graphs. In social networks

(a) Euclidean domain. Green
nodes are 2D convolutional
neighbors of red node in regular
grid. Topology of neighborhood
is constant.

(b) Non-Euclidean domain.
Green nodes are convolutional
neighbors of red node. Topology
of neighborhood is irregular.

Figure 1: Data structure in Euclidean and non-Euclidean do-
mains.

the characteristics of users can be modelled as properties/signals
on top of a social-graph. In sensor networks, the collection of sen-
sors can be seen as elements of an interconnected network-graph.
Motivated by the wide range of possible applications, research fo-
cused on generalizing deep learning architectures to handle the
complexity of graph data. Specifically, many modern Graph Neu-
ral Networks (GNNs) are based on a generalization of Euclidean
convolution operation. Figure 1 indicates how graph convolutions
compare to Euclidean convolutions.

This paper attempts to be a gentle introduction into the develop-
ment of GNNs and their applications. In particular, we present Con-
volutional Graph Neural Networks (ConvGNNs) in depth, which
attempt to generalize convolution from the Euclidean to the non-
Euclidean domain. Due to the vast number of methods published
in recent years, this work focuses on few methods which are elabo-
rated in more detail. For a more comprehensive summary of other
methods see [Wu et al. 2019; Zhou et al. 2018].

This work is structured as follows. We start by introducing GNNs
from a general perspective in Section 2. The abstract view is used
to familiarize the reader with an overview of learning and training
methods in Section 3. Starting with Section 4, pioneering works in
the field of GNNs are highlighted. Section 5, the main section of this
work, deals with ConvGNNs in particular. In Section 6 we compare
the presented methods against standard datasets and in Section 7
we show successful applications of GNNs for open problems in
medicine, physics and social sciences. Section 8 discusses open
problems and future research. Finally, we conclude this work in
Section 9.
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2 GRAPH NEURAL NETWORKS

A Graph Neural Network (GNN) can be seen as a neural network
operating directly on a graph structure. This section introduces
GNNs from an abstract view point.

2.1 Notation

Throughout this work we use lower-case non-bold characters x to
denote scalars or scalar functions. Bold-faced lower-case charac-
ters x represent column vectors and upper-case bold characters A
matrices. xi denotes the i-th element of x , Ai j the element at the
i-th row and j-th column of A. We use A:,i and Ai, : to denote the
i-th column and row of A. Superscripts with lower case letters t
are used to indicate a time/layer indices and T , −1 denote matrix
transpose and inverse. Other commonly used symbols are listed in
Table 1.

2.2 Undirected Graph

Although many specific forms of graphs exist, this work’s scope
is restricted to undirected graphs, which we define as follows. An
undirected graphG = (V, E) is a collection of nodesV and edges E.
Two nodes vi ,vj ∈ V are said to be connected if ei j = (vi ,vj ) ∈ E.
If ei j ∈ E then also eji ∈ E. In addition, let v be the i-th node,
then set of characteristics associated with with v is the i-th row of
feature matrix X ∈ RN×D , denoted by Xi, :.

2.3 Adjacency Matrices

Let G be an undirected graph and let |V| = N , then A denotes the
binary N × N adjacency matrix defined to be

Ai j =

{
1 if ei j ∈ E
0 otherwise

}
. (1)

For undirected graphs A is symmetric, that is A = AT .

2.3.1 Self-Connectivity. Unless otherwise stated, Aii is zero. That
is, the nodes of G are not self-connected. In GNNs, however, it
often makes sense to include self-connections to enable compact
formulations in the context of feature transformation. Therefore,
we denote by Ā the adjacency matrix with self-connections given
by

Ā = I + A, (2)
where I ∈ RN×N is the identity matrix.

2.3.2 Weighted Adjacency. So far, only binary {0, 1} adjacency
matrices have been presented. However, it is useful to think about
arbitrary real-valued entries of Ā to encode weighted connectivity.
For example, we can model a set of N unstructured points in RD
by inducing the following graph topology: Assume the coordinates
of all points is given by the feature matrix X ∈ RN×D . Then, one
way to define a weighted adjacency matrix is as follows

Āi j = exp
(
−
d(Xi, :,Xj, :)

σ 2

)
, (3)

where d(·, ·) is a metric on the Euclidean space and σ is a scaling
factor. Note, that the induced weighted adjacency matrix is self-
connected, because d(Xi, :,Xi, :) = 0. Such a weighted adjacency
matrix densely connects all points, weighted by an exponential fast
decaying value based on their geometric distance.

For the purpose of this work, all adjacency matrices (unless other-
wise noted) will refer to a simpler, binary adjacency matrix.

2.3.3 Normalization. Given Ā, it insightful to think about the fol-
lowing linear action

Z = ĀX, (4)
whereX is the feature input matrix and Z is the transformed feature
matrix. For a single node i , the action can be written as follows

Zi, j =
N∑
k=1

Āi,kXk, j . (5)

Which says that the i-th transformed feature in j-th coordinate
is a weighted linear combination of the input features in j-th co-
ordinated of neighbors of node i . In case of a binary adjacency
matrix, the above becomes a simple sum. In GNNs, Equation 4
may appear in an recursive fashion, by either layer stacking or
recurrent iteration. Because Ā is not normalized, the linear actions
scale the feature values in an undesired fashion. Additionally, nodes
connected to many other nodes will have the same importance as
nodes with fewer neighbors.

To fix this, we apply adjacency matrix normalization. Let D denote
the diagonal node degree matrix Dii =

∑N
j=1 Āi j . The following

normalization variants are commonly found

(1) Row normalization Â = D−1Ā corresponds to

Zi, j =
1
Dii

N∑
k=1

Āi,kXk, j ,

i.e computing average of neighboring features.
(2) Column normalization Â = ĀD−1 corresponds to

Zi, j =
N∑
k=1

Āi,kXk, j

Dkk
,

which effectively sums over neighboring features normalized
by the number of their neighbors.

(3) Symmetric normalization can be done naively Â = D−1ĀD−1,
which would lead to vanishing feature values when iterating
long enough due to the denominator

Zi, j =
N∑
k=1

Āi,kXk, j

DiiDkk
,

which is why it generally not used. Instead, better dynamics
are achieved by

Â = D−0.5ĀD−0.5, (6)

which corresponds to

Zi, j =
N∑
k=1

Āi,kXk, j√
Dii

√
Dkk
.
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Unless otherwise stated, this paper refers to Equation 6 when re-
ferring to normalized adjacency Â matrices. One drawback of nor-
malization is that it cannot handle isolated vertices, as D−1 is not
defined in such cases. A quick fix seen in implementations is to add
a small constant to the entries of D.

Symbol Meaning

G(V, E) Undirected graph with nodesV and edges E
N Number of nodes |V|
D Number of input dimensions
K Number of output dimensions

X,Y,Z Input/output feature matrices
x column vector
I Identity matrix
W Parameter matrix
D Diagonal node degree matrix
A binary/weighted Adjacency matrix
Ā Adjacency matrix with self-loops
Â Symmetrically normalized adjacency matrix
L Graph Laplacian
L̂ Symmetrically normalized Graph Laplacian
σ Element-wise activation function

Table 1: Common symbols and theirmeaning used through-
out this work.

2.4 Network Outputs

Like any other neural network, a GNN can be seen as a computa-
tional graph assembled from re-usable building blocks, which we
usually call layers. In contrast to conventional neural networks,
these layers operate on graphs or transformations thereof. In the
context of this work, transformation refers to either changes in the
topology of the graph, associated node features or both. As such,
GNNs can serve a variety of prediction purposes. We categorize
GNNs based on their analytic purpose as follows [Wu et al. 2019]:

Node-level A GNN operating on node-level computes values for
each node in the graph and is thus useful for node classification
and regression purposes. In addition such GNNs can be seen as
building blocks for computing hidden node embeddings.

Edge-level These type of GNNs are used to predict values for each
graph edge, or a transformed version of it.

Graph-level Refers to GNNs that predict a single value for an
entire graph. Mostly used for classifying entire graphs or computing
similarities between graphs.

This work is mainly concerned with node-level outputs. As we will
see shortly, node-level outputs are re-useable units for all other
analytic tasks.

2.5 Node-level GNNs

Our definition of a graph neural network is restricted to node-level
tasks and defined to be a function д of the following form

Ŷ = д(G,X; Ω), (7)

where Ω is a set of trainable network parameters, Ŷ ∈ RN×K

summarizes the model’s prediction for each node, G is the graph
topology as defined before and X represents node feature vectors.

3 LEARNING & TRAINING

3.1 Learning Variants

For GNNs and in machine learning in general, we distinguish two
main approaches to learning from data [Vapnik and Vapnik 1998]:

Inductive Induction refers to the task of learning patterns from
data such that the model generalizes to any new, unseen data points.
That is, we can use the model as a surrogate for the unknown true
function.

Transductive In transductive learning we relax the idea of build-
ing a model that generalizes to any new data points. Instead, one
attempts to predict values for examples already known during train-
ing. If new samples are provided, the learning algorithmmight need
to be applied again.

Take the task of function approximation as an example. In inductive
learning one attempts to learn a model that we can use to evaluate
the target function at any point. In contrary, transductive learning
computes function values for specific locations already known dur-
ing the training process and avoids learning universally applicable
model.

3.2 Training Objectives

In addition to the learning process, we can distinguish methods
for training a GNN with node-level outputs. GNNs are trained
like other neural networks by (stochastic) gradient descent of an
objective function with respect to parameters. Given a (supervised)
training set {X,Y} on the graph G, we can distinguish the following
methods.

Supervised The goal of supervised training is to minimize

Ω∗ = arg min
Ω

N∑
i=1

L(Yi, :, Ŷi, :), (8)

where L is node-level loss function, and Ŷi, : is the i-th row of
д(G,X; Ω).

Semi-supervised Semi-supervised training takes unlabelled data
into account. This is done via constructing topology based loss
functions that act like smoothing/regularization constraints. In
[Yang et al. 2016] a penalty term based on the dissimilarity of
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predictions for neighboring graph nodes is used

Lr eд = 0.5
∑
i, j

Ai j d(Ŷi, :, Ŷj, :),

where A is the adjacency matrix and d is a distance metric. Com-
bined with the supervised loss, the semi-supervised target becomes

Ω∗ = arg min
Ω

[ N∑
i=1

L(Yi, :, Ŷi, :) + λLr eд

]
,

where λ is balancing factor.

Unsupervised In this scenario, no supervised training data is used.
The loss functions in this scenario enforce similar node-embeddings
of nearby graph elements [Hamilton et al. 2017] or use reconstruc-
tion errors [Kipf and Welling 2016].

Here we focus on inductive learning with either supervised or semi-
supervised training objectives. Keep in mind that, in the above
description, we made the implicit assumption that the graph topol-
ogy remains constant for each training sample. In practice this
is often not the case and training needs to extend to datasets of
the form {(Gi ,Xi ,Yi )}i≤T . Unless otherwise stated, we assume a
single constant graph topology throughout this treatment.

3.2.1 Batch vs. Stochastic Training. Up until recently, GNN training
was performed primarily in batch mode. That is, network forward
and backward passes were performed for all graph nodes at once
(usually including train and test nodes). As graphs grew in size,
methods for mini-batch training became valuable. On graphs, mini-
batch training poses a problem: each node is connected to variable
number of neighbors and this causes issues with modern training
architectures, which use tensors as their building block to store
information.

One solution is given in [Hamilton et al. 2017]. They propose to
perform random sampling in local neighborhoods for each layer
to keep the mini-batch size constant. The sampling strategy keeps
the mini-batch size constant throughout many network layers and
introduces a sort of stochasticity, often desired in stochastic opti-
mization.

4 RECURRENT GRAPH NEURAL NETWORKS

Recurrent Graph Neural Networks (RecGNNs) [Scarselli et al. 2008;
Sperduti and Starita 1997] are among the early works in the field
of graph neural networks. These methods iteratively apply the
same parametrized function to node values to extract high level
information patterns. The information is propagated via the edges
of the graph until an equilibrium is reached. Conceptually this
is reminiscent of methods for inferring marginal probabilities in
graphical models, such as (loopy) belief propagation [Pearl 1986].

The iterative update rule for a RecGNN can be defined as follows

Ht = f (G,Ht−1;W) (9)

withHt ∈ RN×D being the feature representation at level t ,H0 = X,
and f being a function parametrized byW ∈ RD×D . Here Ht can

be seen as a hidden state after the t-th iteration. The output of a
RecGNN is simply the hidden state after the last iteration T

Ŷ = д(G,X; Ω) = HT , (10)

with Ω = {W}. Since parameters are shared across iterations, the
dimensionality of input and hidden states does not change. In order
for the above update procedure to converge, f needs to shrink
the distance of hidden states. That is, f needs to be contraction
mapping.

The following update rule specifies a typical RecGNN

Ht
i, : = σ

©«Ht−1
i, : W +

∑
n∈NG (i)

Ht−1
n, : W

ª®¬ , (11)

where NG (i) is the set of nodes connected to the i-th node via G,
and σ is a non-linear function applied element-wise. The above
update rule computes new hidden state as a non-linear function
acting on the sum of transformed previous hidden states of that
node and it’s neighbors. We can write this more compactly for all
of G’s nodes as

Ht = σ
(
ÂHt−1W

)
, (12)

where Â is the symmetrically normalized adjacency matrix of G
extended by self loops. Observe that normalization of the adjacency
matrix may have been skipped in source literature.

5 CONVOLUTIONAL GRAPH NEURAL
NETWORKS

Convolutional Graph Neural Networks (ConvGNNs) attempt to
generalize convolutions from the Euclidean domain to graph struc-
tures. Similar to RecGNNs, ConvGNNs compute hidden states by
aggregation of neighboring hidden states. What distinguishes them
from RecGNNs is that ConvGNNs stack multiple layers of graph
convolutions to extract high level node information. As such, they
replace iteration with a fixed number of layers carrying different
parameter sets. In the following, we first highlight the main prop-
erties of Euclidean convolutions and then explain two branches of
ConvGNNs: Spectral ConvGNNs heavily rely on graph signal pro-
cessing [Chung and Graham 1997] and the Graph Fourier transform
to define graph signal filters. The filters of spectral GNNs can be
seen as global filters. In contrast spatial ConvGNNs propose filters
operating on the local neighborhood of graphs directly. Therefore,
they are usually more scalable for larger graphs and are also suit-
able for tasks with different graph topologies in inductive learning
situations (see Section 3).

5.1 Properties of Euclidean Convolutions

Images and video can be considered functions on the Euclidean
space, sampled on a grid-like regular topology (see Figure 1a). Simi-
larly, sound can bemodelled by amplitude as a function of time, sam-
pled on a one-dimensional time-line. Albeit such data is extremely
high-dimensional, convolution neural networks [Fukushima 1980]
have proven powerful tools to efficiently and robustly process it.
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The basic underlying assumption is that audio/video/text is compo-
sitional [Bronstein et al. 2017; Henaff et al. 2015] in nature and thus
can be efficiently processed by filters that adhere to the following
properties:

Locality Features can be described by a local compact receptive
field.

Stationarity Features are independent of their location in the do-
main, i.e. translational invariant.

Multi-scale Complex features can be build from simpler ones
through aggregation in hierarchies.

Convolutional filters exploit these three principles as follows. Lo-
cality is ensured by a compact fixed-size filter mask. Translational
invariance is achieved by sliding the filter mask across the sampled
Euclidean grid. Finally, complex features are created by applying
convolutions to down-sampled features created by convolutions
operating on higher resolution input. The three properties are il-
lustrated in Figure 2.

(a) Locality and Station-
arity. Features are transla-
tional invariant and com-
pact.

(b) Multi-scale. Complex feature ag-
gregation through hierarchical com-
position [Zeiler and Fergus 2014].

Figure 2: Compositional feature principles for 2D images.

Mathematically, such convolutions can be compactly expressed by
the cross-correlation operator ⋆ applied to two real-valued func-
tions f and h

(f ⋆h)(x) =
∫ ∞

−∞
f (t)h(t + x)dt , (13)

where we ignored a bias term. In the discrete case, this amounts
to shifting the compact filter h across f and computing point-wise
inner products. The inner product acts as an aggregator that con-
denses the contents of the input with the filter. Because of the
regular underlying structure, Euclidean convolution exhibit the
following two important properties:

(1) The inner product always comprises the same number of
elements.

(2) The elements of the inner product are always processed in
the same order, giving filters a sense of orientation.

As we will see below, it is challenging to generalize these properties
to arbitrary graphs.

From an implementation perspective, convolution is an efficient
method for processing Euclidean data: Locality is bounded by the
number of parameters which is constant O(1), stationarity for com-
pact kernels requires O(n) operations or O(n logn) for general
Fourier transform. Finally, generating multi-scale hierarchies (i.e.
pooling, down-sampling) is bounded by O(n).

5.2 Spectral ConvGNNs

Spectral ConvGNNs rely on the Graph Fourier Transform to per-
form signal processing on graphs. A graph signal

x : V → R

is mapping from the vertices of a graph to real numbers. Let x ∈ RN
be the column-vector representation of a signal, that is the i-th
element of x corresponds to the signal value of node i . The node
feature vectors X can thus be seen as series of K independent
signals. Graph processing seeks for a new basis to decompose the
signal into a set of mutually orthogonal components. Central for
this operation is the Graph Laplacian [Chung and Graham 1997]

L = D − A, (14)

where D is again the diagonal degree matrix. As with adjacency
matrices, in practice we rather work with symmetrically normalized
Graph Laplacians

L̂ = I − Â. (15)
The Graph Laplacian is the discrete form of the Laplacian

∆x = ∇2x ,

measuring the smoothness of graph signals. The key idea is that a
smooth graph signal does not change its value by much from one
vertex to another connected vertex. The Graph Laplacian is a real
symmetric positive semidefinite matrix and can thus be factored as

L̂ = UVUT ,

where V is a diagonal ascendingly sorted matrix of eigenvalues, and
U is the corresponding matrix of eigenvectors. The Graph Fourier
Transform of a signal x is defined to be the projection of x onto the
basis induced by U

x̂ = UT x. (16)
Note, that in practice often only the first few eigenvectors are used
to capture the graph smoothness. The Graph Convolution ⋆G of
two signals x , w in their corresponding vector representation is
then defined as

x ⋆G w = U(UT x ⊙ UTw),

where ⊙ represents element-wise multiplication. Let

W = diaд(UTw) (17)

denote a non-parametric filter (i.e all N parameters are free) in
RN×N , then the Graph Convolution can be compactly written as

x ⋆G w = UWUT x.

In [Bruna et al. 2014] Spectral Convolutional Neural Networks
(SpectralCNN) are presented. The learnable parameters per layer
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are the diagonal entries ofW in Equation 17. The output signal j in
the t-th layer of a SpectralCNN is computed via

Ht
:, j = σ

(
U

Dt∑
i=1

j
iW

tUTHt−1
:,i

)
, (18)

where j
iW

t ∈ RN×N is the diagonal parameter matrix in layer t
transforming the input signal i of layer t − 1 to output signal j , and
Dt is the number of input signals in Ht−1.

The spectral filters presented so far violate Euclidean convolution
properties in the following sense: the learned filters are not localized
in space, as each filter is composed of N = |V| parameters. In addi-
tion, a perturbation of vertex ordering changes the eigenvector basis
which makes learned filters domain specific, i.e cannot be applied
in a different context. The performance of the method is further
limited by the requirement of performing an eigen-decomposition
O(N 3). For this reason various improvements to the SpectralCNN
architecture have been proposed. For example, in [Defferrard et al.
2016] parametric filters based on recursive Chebyshev polynomials
up to order K are introduced. In their method, polynomic coeffi-
cients are shared across graph locations to ensure feature locality.
Additionally, the proposed method offers linear computational com-
plexity and constant learning complexity (depending on the order
of K ).

5.3 Spatial ConvGNNs

Spatial ConvGNNs define filters directly on the graph neighbor-
hood, by stacking non-linear aggregation functions defined on the
local neighborhood of nodes. Since a graph topology generally
does not define an explicit neighboring order, these aggregation
functions need to be permutation invariant. As such, spatial graph
convolutions lack orientation as described in Section 5.1. Learn-
able filters correspond to symmetric variants of Euclidean kernels.
Compared to spectral approaches, spatial ConvGNNs avoid global
processing, making this method scalable even for large graphs. In
addition, spatial approaches are suitable for learning inductive mod-
els that may be applied even to altering graph topologies. RecGNNs
and spatial ConvGNNs share similar ideas, but what sets them apart
is the fact that spatial methods eliminate weight sharing and replace
iterative processing by a fixed number of stacked layers.

[Micheli 2009] proposes the following layer-wise architecture

Ht = σ

(
XWt +

t−1∑
k=1

AHk
kW

t

)
, (19)

where kW
t is a parameter matrix transforming featuresHk of layer

k to layer t . The model, coined NN4G, offers skip-connections from
all previous layers to the current layer. NN4G is trained layer-wise,
and was used for graph-level predictions.

[Kipf and Welling 2017] recently proposed a spatial graph convolu-
tion based on first-order approximation of spectral methods

Ht = σ
(
ÂHt−1Wt

)
, (20)

with H0 = X. Equation 20 is similar to Equation 19 without skip-
connections and normalization.

[Hamilton et al. 2017] refines Equation 20 by separating functions
for aggregation and stacking. While in Equation 20 all features
in the convolutional radius are treated the same, Hamilton et al.
investigate combinations of neighborhood aggregation (sum, mean,
LSTM/GRU) followed by concatenation with center node features.
Further spatial methods are detailed in [Wu et al. 2019] and [Zhou
et al. 2018].

5.4 Beyond ConvGNNs

ConvGNNs introduced in the previous sections play an important
role as building blocks for more complex architectures.

5.4.1 Graph Attention Networks. Graph attention networks intro-
duced by [Veličković et al. 2018] extend constant adjacencymatrices
by per-node attention weights. Using a shallow neural network,
each node attends over its neighboring nodes in the following way

At
i j = f (Ht−1

i, : ,H
t−1
j, : ) when (i, j) ∈ E,

where f is a single layer neural network and At
i j is the adjacency

matrix generated by attention in layer t .

5.4.2 Graph Autoencoders. Graph autoencoders [Simonovsky and
Komodakis 2018] aim to learn low dimensional representation for
an entire graphs and then reconstruct the graph via a decoder. These
methods often stack multiple layers of ConvGNNs to model the
encoder and decoder parts. In particular, the encoder parameters
are optimized to fit

p(z|G,X),
while the decoder attempts to recreate the original graph from the
hidden embedding

p(Ĝ, X̂|z).
Variational autoencoders exhibit the possibility to create variants
of graphs by reconstructing modified ẑ = z + ϵ hidden states.

5.4.3 Spatio-Temporal GNNs. Spatio-temporal GNNs [Yu et al. 2018]
consider a sequence of graphs as input. Usually the graph topology
G remains constant, while node and edge features change over
time. The key idea of Spatio-temporal GNNs is to consider spatial
relationships (encoded via graph toplogy) and time relationships
(change of features over time) simultaneously. Spatial encoding is
performed via ConvGNNs, while recurrent memory cells (LSTM,
GRU) are used to create hidden embedding along the time axis.

6 BENCHMARKS

We introduce three different datasets for benchmarking node-level
GNNs: Pubmed, Citeseer and Cora [Lu and Getoor 2003; McCal-
lum et al. 2000] are citation networks, in which nodes represent
documents and edges are citation links. Node features correspond
to word occurrences in the document’s abstract and are encoded
as bag-of-word vectors. Each document belongs to one or more
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classes and the task of the GNN is to predict a correct label for each
of the target documents. Table 2 shows dataset statistics.

Dataset Nodes Edges Features Classes

Pubmed 19,717 44,338 500 3
Citeseer 3,327 4,732 3,703 6
Cora 2,708 5,429 1,433 7

Table 2: Dataset statistics for Pubmed, Citeseer and Cora
[Yang et al. 2016].

The most widely used train/test split is the one proposed by [Yang
et al. 2016]. However, it is not clear if all the benchmarked methods
follow the proposed train/test split rules or perform cross-validation.
In general, all methods listed are trained on less than 5 % labeled
nodes. Table 3 compares the classification accuracy on all three
datasets introduced above.

Name Type Pubmed Citeseer Cora

Planetoid [Yang et al. 2016] Spatial 77.2 64.7 75.7
GCN [Kipf and Welling 2017] Spatial 79 70.3 81.5
GraphSAGE [Hamilton et al. 2017] Spatial 78.3 71.1 83.3
Spectral CNN [Bruna et al. 2014] Spectral 73.9 58.9 73.3
ChebyNet [Defferrard et al. 2016] Spectral 74.4 69.8 81.2
Truncated Krylov [Luan et al. 2019] Spectral 80.1 74.2 83.5

Table 3: Classification accuracy on Pubmed, Citeseer and
Cora for selected methods. Statistics taken from individual
papers.

7 APPLICATIONS

Since graphs are a natural choice to represent data inmany domains,
GNNs have a variety of applications. Some of them are presented
in this section. Many more examples can be found in [Zhou et al.
2018].

Interaction Networks [Battaglia et al. 2016] propose a learnable
physics engine that considers the relation of objects and system
state at time t and then predicts the state for future timepoints.
The input state is modelled as graph and the engine consists of a
ConvGNN. See Figure 3 for a demonstration.

PinSage [Ying et al. 2018] describe a large-scale graph convolution
network for recommending pins in PInterest. The model generates
hidden embeddings for all nodes (pins) given their relation to other
nodes and input images. Figure 4 describes the process of generating
embeddings. The embeddings are then used for recommendation
purposes using simple nearest neighbor queries as shown in Fig-
ure 5.

Drug Side Effects [Zitnik et al. 2018] propose a ConvGNN to
predict polypharmacy side effects based on drug and protein in-
teraction. Simultaneous use of multiple drugs increases the risk of

Figure 3: Interaction networks predicting physical system
states. ’True’ is the ground truth, ’Model’ is the prediction of
the method initialized with state shown in first row. Image
taken from [Battaglia et al. 2016].

Figure 4: PinSage algorithm overview. In order to gener-
ate hidden embeddings for node A, a two layer ConvGNN is
used to transform input values to hidden embeddings. Im-
age taken from [Ying et al. 2018].

side-effects for the patient. Their network models protein-protein
interactions, drug-protein interactions and predicts drug-drug inter-
actions (side-effects). Figure 6 illustrates the polypharmacy graph.

Traffic Forecasting [Yu et al. 2018] proposes a spatio-temporal
ConvGNN for timely accurate traffic forecasting. The spatial axis
comprises sensors measuring traffic at specific locations (nodes).
The graph edges represent distances between network sensors. The
traffic measurements of sensors are the features that change with
time. Figure 7 shows the placement of traffic sensors on roads across
California. Given an input sequence, the model predicts future road
traffic for each sensor location.

8 DISCUSSION

As illustrated in the last section, GNNs have shown great perfor-
mance for prediction tasks in medicine, physics and social sciences.
However, GNNs still pose open research questions.

Over-smoothing There is experimental evidence [Li et al. 2018]
that the performance of GNNs is inversely proportional to the
stacking depth. At present time, shallow networks work better
than deeply stacked networks. [Chen et al. 2019; Kipf and Welling
2017] argue that the performance drop can be explained by an over-
smoothing effect inherent to GNNs. This issue is reminiscent of
contraction mapping issues of RecGNNs. The contraction mapping
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Figure 5: PinSage recommendation compared to other al-
gorithms. Given an input image (left), PinSage recommends
multiple images based on nearest neighbor queries on hid-
den embeddings created by a ConvGNN. Image taken from
[Ying et al. 2018].

Figure 6: The polypharmacy graph models protein-protein,
drug-protein, and drug-drug interactions. The network
takes the former two as given and predicts edge-level out-
put information for drug-drug interactions interpreted as
the probability of side effects. Image taken from [Zitnik et al.
2018].

Figure 7: Left: roads with traffic sensor locations superim-
posed. Right, adjacencymatrix of more than 200 road traffic
sensors.

forces nearby nodes to create embeddings with decreasing distance.
This leads to indistinguishable representations of nodes in different
classes and impedes the performance of a GNN.

Scalability ConvGNNs exploit local neighborhood graph informa-
tion to generate node embeddings. In each layer information can
propagate one hop further around the graph topology. Because of
the over-smoothing issue, we cannot stack an arbitrary number of
layers and still remain discriminative. Inescapably, information can-
not propagate throughout the entire graph and is lost. The global
filters of Spectral ConvGNNs are not exposed to this issue, but due
to the eigen-decomposition they are limited to moderate graph
sizes.

Heterogenous Graphs Many GNNs are applied to homogenous
graphs. Heterogenous graphs may consist of node types with vary-
ing semantics (e.g. factor-graphs) and it is still unclear how to handle
those. For this reason, a practitioner in the field of GNNs will find
it hard to choose a template for modelling a specific graph-related
problem.

9 CONCLUSION

In this work we introduced Graph Neural Networks (GNNs) to
tackle problems in which graph structures are the natural way to
represent data. In particular, we focused on Convolutional Graph
Neural Networks (ConvGNN). We motivated these by the inspiring
properties of Convolutions in the Euclidean domain. We showed
that GNNS are capable of addressing many important machine
learning problems in a wide variety of domains, such as medicine,
physics and social sciences.

We also find that the success of GNNs is strongly linked to the
modeling of the input graph. In contrast to the Euclidean domain,
where the graph structure is often implicit (e.g. grid-like in images),
the graph structure in the non-Euclidean domain is often designed
manually. This holds opportunities and risks for the success of a
GNN and partly explains why many different solutions for similar
tasks are proposed.
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